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The efforts associated with parametrization of continuum-based models for crystal plasticity are a significant obstacle for the rou-
tine use of these models in materials science and engineering. While phenomenological constitutive descriptions are attractive due
to their small number of adjustable parameters, the lack of physical meaning of their parameters counteracts this advantage to some
extent. This study shows that interaction/strengthening coefficients determined with the help of discrete dislocation dynamics sim-
ulations for use in physics-based formulations can also be used to improve the predictive quality of phenomenological models. Since
the values of these parameters have been determined for most technologically relevant materials, the findings enable to improve the
parametrization of phenomenological crystal plasticity models at no costs.
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1 Introduction

Continuum crystal plasticity models are typically classified as either phenomenological or physics-based
[1, 2, 3]. While former models rely solely on fitting the parameters of an ad hoc chosen functional form,
physics-based models make—at least partly—use of explainable parameters such as dislocation density,
activation energy, or Burgers vector. Although physics-based models in general do not lead to better
predictions [4], the use of explainable parameters and mechanism-based equations gives them two dis-
tinct advantages: 1) they have predictive capabilities outside of the data range used to determine their
parameters 2) they can be formulated and parameterized with the help of simulations methods for smaller
scales such as density functional theory (DFT) [5] and discrete dislocation dynamics (DDD) [6, 7]. DDD
simulations are particularly useful for the the determination of parameters that describe dislocation–
dislocation interactions [8, 9, 10, 11, 12] which are the reason for strain hardening.
The primary state variable of physics-based constitutive models is the dislocation density ρ, hence they
are also called dislocation density-based models [3]. A plethora of formulations has been proposed to de-
scribe the dislocation population and predict its evolution during deformation. While simple models rely
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2 SIMULATION SETUP

on the evolution of a generic dislocation density per slip system [13], sophisticated approaches are based
on multiple dislocation densities and consider their characteristics for mechanism-based evolution rules
[14, 15]. Strain hardening in most of these models is derived from the so-called Taylor relation, which
implies that the critical resolved shear stress τcrit (CRSS) is proportional to the square root of the dislo-
cation density. Extensions of the Taylor relation that consider dislocation densities per slip system pro-
posed by Lavrentev and Pokhil [16] and Franciosi, Berveiller, and Zaoui [17] predict system-dependent
hardening and are typically used in crystal plasticity models. The latter formulation, which has demon-
strated its ability to reproduce results from DDD simulations [10, 11], reads for N slip systems

τ icrit = µb

√√√√( N∑
j

aijρj

)
, (1)

with shear modulus µ and magnitude of the Burgers vector b. The entries aij of the interaction matrix
a are a measure of the average interaction strength that dislocations on system j exert on dislocations
from system i. The values of most of these interaction coefficients can be obtained directly from DDD
simulations [8] in dependence of material [12] and dislocation density [18, 9].
In phenomenological models, the resistance against plastic flow τcrit, i.e. the CRSS per slip system, is
directly used as a state variable. Various hardening rules have been proposed to describe the evolution
of the CRSS, e.g. the extension of the Voce law [19, 20] to multiple slip systems [21, 22]. Another com-
monly chosen form is a power law [23],

τ̇ icrit = ℏ
∣∣∣∣1− τ icrit

τ∞crit

∣∣∣∣a N∑
j

hij
∣∣γ̇j
∣∣ , (2)

where ℏ and a are fitting parameters, τ∞crit is the saturation value of τcrit, γ̇ is the shear rate, and h is
the hardening moduli matrix [24, 25]. Despite the clear analogy between a and h, typically hij are cho-
sen to be either 1.0 or 1.4 [26, 27]. This choice dates back—to the best knowledge of the authors—to
a limited set of experimental observations reported by Kocks [28] which motivated Peirce, Asaro, and
Needleman [23] to use values of 1.0 for all coplanar interactions and 1.4 otherwise. A simplification of
this parametrization is frequently used where 1.0 is used only for self interactions and not for other copla-
nar interactions which also have a value of 1.4 [29]. While the origins of this simplification are unclear, it
should be noted that there is strong evidence that the coplanar interaction is weak, in particular in com-
parison to the strong collinear interaction [8].
In this study, it is investigated whether the parametrization of phenomenological models is improved
when values obtained for the interaction in physics-based models, i.e. for aij, are used for hij instead
of the ubiquitous 1.0/1.4 combination. To this end, reference results are computed with a dislocation
density-based model and compared to results from a phenomenological model with different choices for
entries of the hardening moduli matrix.

2 Simulation Setup

All simulations are performed using DAMASK 3.0.1 [30, 31] with a Fast Fourier Transform-based spec-
tral solver [32, 33, 34]. To avoid complications arising when more than one family of slip systems exists,
which might have different hardening behavior, a face-centered cubic (fcc) lattice is assumed. In the case
of fcc crystals that deform exclusively on the 12 octahedral {1 1 1}⟨1 1 0⟩ slip systems, there exists 7 dif-
ferent interaction mechanisms. Following the notation of Madec and Kubin [12], these are labeled as self
(h0), coplanar (hcopla), and collinear (hcoli) interactions; Hirth lock (h1), glissile junctions G0◦ and G60◦

(h2, h
∗
2), and Lomer lock (h3).
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2.1 Microstructures and Textures 2 SIMULATION SETUP

Table 1: Independent values of the hardening moduli matrix h of the phenomenological model used in the parameter
study. The strengthening and interaction coefficients are taken from [12] and scaled such that h0 = 1.0.

h0 hcopla hcoli h1 h2 h∗
2 h3

traditional 1.0 1.0 1.4 1.4 1.4 1.4 1.4
simplified 1.0 1.4 1.4 1.4 1.4 1.4 1.4

strengthening coeff. 1.00 1.00 2.35 0.60 0.91 0.86 1.17
interaction coeff. 1.00 1.00 5.51 0.36 0.84 0.74 1.38

2.1 Microstructures and Textures

Two different microstructures are synthetically generated, one with globular grains and a random tex-
ture and one with flattened grains (aspect ratio 1:1:3) and an idealized fcc rolling texture. Both microstruc-
tures are discretized by 48×48×48 voxels, contain 1000 grains, and are periodically repeated at the bound-
aries. The rolling texture was created using texture components with Gaussian scatter following the ideas
of Helming [35]. It consists of 30% S orientation ({1 2 3}⟨6 3 4⟩), 20% Cu orientation ({1 1 2}⟨1 1 1⟩),
15% Brass orientation ({0 1 1}⟨2 1 1⟩), 10% α-fiber (⟨1 1 0⟩ —— ND), and a random background [36, 37].
A scatter with a full width at half maximum of 50◦ and 20◦ was used for the texture components and for
the fiber, respectively.

2.2 Load Cases

The considered load cases are uniaxial tension and simple shear, both to a strain of approximately1 15%
at a strain rate of 1× 10−3 s−1; the two (uniaxial tension) or three (simple shear) undefined normal com-
ponents of stress are set to 0.0MPa to enable volume changes due to contraction in the elastic regime.
These values are volume averages and periodic boundary conditions, which are inherent to the spectral
method, are applied.

2.3 Reference Results

A dislocation density-based model is used to obtain a ground truth benchmark. In this model the inter-
actions are described by Eq. (1), i.e. the values of the interaction matrix are independent of the dislo-
cation density. An existing parametrization for Inconel 625 [4], a nickel-based superalloy, which employs
interaction coefficients for Nickel from [12], is used.

2.4 Parameter Study

A phenomenological power law formulation is parameterized with the following four choices for the hard-
ening moduli matrix in Eq. (2):

• Simplified: All moduli have a value of 1.4 except for the self interaction which has a value of 1.0.

• Traditional: Self and coplanar interactions have a value of 1.0; the value of all remaining interac-
tions is set to 1.4.

• Strengthening coefficients (α): Strengthening coefficients are directly obtained from DDD simu-
lations [12, 9] and are scaled such that h0 = 1.0.

• Interaction coefficients (a): These values are used in dislocation density-based constitutive laws
(and constitute the interaction matrix aij that appears in Eq. (1)) and are the square of the strength-
ening coefficients [12].

1The load is defined in terms of the deformation gradient F and a final value of 1.15 and 0.15 was prescribed for respective direction of the
tensile (F11) and shear (F21) load, respectively.
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2.5 Measuring Correlation 3 RESULTS AND DISCUSSION

The resulting independent values for the four cases are shown in Table 1.
The parameters of this model, more precisely ℏ, τ∞crit, and a from Eq. (2), are adjusted for all four cases
individually such that the average stress–strain behavior of the reference material is reproduced. To this
end a simplified polycrystal model consisting of 10× 10× 10 material points with 1000 grains is used, i.e.
each “grain” discretized by a single voxel. The parameters are optimized using the Nelder–Mead algo-
rithm available in SciPy [38, 39, 40]. The loss is the difference in stress in loading direction from all four
combinations of texture (random and rolling) and load case (uniaxial tension and simple shear) which
are considered with equal weights.

2.5 Measuring Correlation

The agreement between the reference solution and the different parametrizations of the phenomenolog-
ical model can be conveniently visualized in correlation plots. For a perfect agreement, all points are
located on a line with a slope of 1.0 (45◦ inclination) that goes through the origin which is called the
1:1 line. For an imperfect agreement, two kind of deviations from this ideal situation can be observed:
1) the best-fit line might deviate from this line. This is called a lack of accuracy [41]. 2) the individual
points scatter around the best-fit line. This is called a lack of precision [41].
The concordance correlation coefficient ρc proposed by Lin [41] is used in this study to measure to which
degree data pairs fall on the 1:1 line. It accounts conveniently for both, precision and accuracy, and is
defined as:

ρc := 1− E[ϵ2]
E[ϵ2]|ρ=0

. (3)

In Eq. (3) the numerator E[ϵ2] is the expected square of the distance from the 1:1 line. The denomina-
tor is the same measure but for the case that the two variables are uncorrelated, i.e. Pearson’s correla-
tion coefficient ρ is zero. After simplification, ρc can be computed using standard deviation (σz and σẑ),
mean (µz and µẑ) and covariance (σzẑ) as follows:

ρc =
2σzẑ

σ2
z + σ2

ẑ + (µz − µẑ)
2 =

σzẑ

σzσẑ

2
1
σ∗ + σ∗ + u2

=: ρCb, (4)

where σ∗ = σẑ

σz
, u = µz−µẑ√

σzσẑ
, and z and ẑ denote material point data from physics-based and phenomeno-

logical models, respectively. Lin [41] multiplicatively decomposed ρc into two contributions as seen in
Eq. (4): Pearson’s correlation coefficient ρ which measures the degree of linear correlation, and bias cor-
rection factor Cb which measures how far the best-fit line deviates from the 1:1 line. Interpretation of
value of ρc is analogous to that of ρ: 1 indicates perfect agreement (z = ẑ), −1 indicates perfect dis-
agreement (z = −ẑ), and a departure from these terminal values towards zero indicate lowering degree of
agreement. Although ρc is commonly used as a single index when comparing multiple models against a
sole reference dataset [42], the decomposition products ρ and Cb are also shown. In addition, the model-

ing efficiency coefficient [43] MEC := 1− MSE
σ2
z

where MSE =
∑N

i=1 (z − ẑ)2, is calculated.

3 Results and Discussion

As a prerequisite for an objective comparison of the different parametrizations, it has to be established
that the phenomenological model reproduces the macroscopic behavior of the dislocation density-based
model independently of the chosen parametrization. To this end, the equivalent stress–strain curves for
both microstructures loaded in tension and in simple shear are shown in Fig. 1. The reference results
are shown as a solid line and the minimum and maximum among all four parametrizations is shown as
a shaded area. It can be seen that all parametrizations of the phenomenological constitutive law repro-
duce the macroscopic behavior of the physics-based formulation. In this plot, the strain levels (ε ≈ 0.08
and ε ≈ 0.15) at which the correlation is investigated are also shown.
The correlation between the reference solution and the different parametrizations is determined indepen-
dently for the hardening behavior and for the deformation behavior. For the hardening behavior, the
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Figure 1: Stress–strain curve in loading direction for the four combinations of microstructure/texture and load. The solid
and dashed lines indicate the reference results obtained with the dislocation density-based model and the shaded back-
ground represents the range obtained from the four different parametrizations of the phenomenological model. The black
dots mark strain levels of approximately 8%, the black crosses the final load of approximately 15%.

Table 2: Fraction of slip systems that are active, i.e. have accumulated slip γ > 1 × 10−3 for the different parametriza-
tions. The values given in normal font are the average of all four combinations of microstructure/texture and load which
are complemented by their minimum in subscript and their maximum in superscript.

ε ≈ 0.08 ε ≈ 0.15

simplified 0.28 0.29
0.26 0.30 0.31

0.29

traditional 0.28 0.29
0.26 0.30 0.31

0.29

strengthening coeff. 0.30 0.31
0.29 0.33 0.33

0.32

interaction coeff. 0.31 0.31
0.30 0.33 0.34

0.33

CRSS increase per slip system of all material points, ∆τcrit := τcrit − τcrit,0, is examined. For the defor-
mation behavior, the accumulated shear γ per slip system is examined. Since it is known only a few slip
systems need to be activated to achieve the applied deformation [44], only active slip systems, i.e. sys-
tems with γ > 1 × 10−3 are considered for this analysis. Table 2 gives the fraction of active slip systems
for which γ > 1 × 10−3 and shows that about 30%, i.e. 4 out of the 12 slip systems, are active for the
considered cases.

3.1 Hardening Behavior

Correlation plots of the CRSS increase ∆τcrit per slip system of all material points are shown at applied
strains of approximately 8% and 15% (c.f. Fig. 1) in Figs. 2 and 3, respectively. The data is plotted in-
dividually for the four considered parametrizations as density contour plots with the color code repre-
senting point density in terms of number of data points on a logarithmic scale. The figures reveal that
the traditional and simplified parametrizations perform worse than the physics-informed parametrization
and the use of interaction parameters leads to the closest agreement. Detailed inspection of the raw data
[45] reveals that ∆τcrit of the primary, i.e. the most active, slip system is in a significantly better agree-
ment than the remaining slip systems for the traditional and simplified parameter sets. Hence, besides
a clear deviation of contours from 1:1 line, a hint of bimodal distribution can be seen in Fig. 2(a) and
(b) and Fig. 3(a) and (b). Such behavior is not seen when using the physics-informed parametrizations.
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3.1 Hardening Behavior 3 RESULTS AND DISCUSSION

0 400 800
0

400

800

p
h
en

o
m

en
o
lo

g
ic

a
l

(a) simplified

0 400 800

(b) traditional

0 400 800

(c) strengthening coeff.

0 400 800

(d) interaction coeff.

100

101

102

103

104

105

dislocation density-based

Figure 2: Density plot showing the correlation between the increase in CRSS (∆τcrit in MPa) obtained with the different
parametrizations of the phenomenological model and the dislocation density-based model at an applied strain of approxi-
mately 8% in loading direction.
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Figure 3: Density plot showing the correlation between the increase in CRSS (∆τcrit in MPa) obtained with the different
parametrizations of the phenomenological model and the dislocation density-based model at an applied strain of approxi-
mately 15% in loading direction.
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Table 3: Concordance correlation coefficient ρc and its decomposed products: Pearson’s correlation coefficient ρ and bias
correction factor Cb; and modeling efficiency coefficient MEC measuring the degree of agreement between the reference
results and the different parametrizations for the increase in CRSS ∆τ . The values given in normal font are the average of
all four combinations of microstructure/texture and load which are complemented by their minimum in subscript and their
maximum in superscript.

ε ≈ 0.08 ε ≈ 0.15
ρ Cb ρc MEC ρ Cb ρc MEC

simplified 0.46 0.51
0.44 0.68 0.70

0.66 0.31 0.34
0.29 0.15 0.17

0.12 0.43 0.46
0.40 0.64 0.66

0.63 0.27 0.29
0.26 0.13 0.15

0.11

traditional 0.45 0.49
0.42 0.69 0.71

0.68 0.31 0.33
0.29 0.13 0.15

0.10 0.42 0.44
0.38 0.65 0.67

0.65 0.27 0.28
0.25 0.11 0.14

0.08

strengthening coeff. 0.86 0.88
0.86 0.77 0.80

0.74 0.67 0.68
0.65 0.51 0.54

0.46 0.82 0.84
0.81 0.74 0.76

0.71 0.61 0.62
0.60 0.44 0.47

0.40

interaction coeff. 0.88 0.90
0.87 0.99 0.99

0.98 0.87 0.88
0.86 0.69 0.72

0.66 0.86 0.87
0.84 0.99 1.00

0.98 0.85 0.85
0.84 0.69 0.70

0.69

There is also a clear difference between the results from using strengthening coefficients to that from us-
ing interaction coefficients: While the former have a distribution that is located below the 1:1 line, in-
dicating less hardening of the phenomenological model than the reference result, using the interaction
coefficients leads to an almost symmetric distribution of high-density contour regions about the line of
equality.
To further quantify the visual impressions, the measures of correlation introduced in Section 2.5 are given
in Table 3 for the two considered strain levels. In this table, the average among the four combinations of
microstructure/texture and load is complemented by the minimum and maximum among them. From
this table, the following observations can be made:

• The visual impression of Figs. 2 and 3 is reaffirmed and the highest degree of agreement is seen for
interaction coefficients, followed by strengthening coefficients.

• Low values of the correlation coefficient ρ for simplified and traditional cases indicate higher scatter
(imprecision) about the best-fit line.

• Cb ≈ 1.0 in the case of interaction coefficient indicate that the best-fit line agrees with the 1:1 line.

• Independently of the chosen parameterization, the agreement slightly decreases with increasing strain
level.

• Similar results are obtained by all four combinations of microstructure/texture and load.

• MEC is always lower than ρc.

• ρc indicates equal quality for the simplified and the traditional parametrizations while MEC is lower
for the traditional case.

3.2 Deformation Behavior

For studying the impact of different parametrizations on the deformation behavior, correlation plots com-
paring plastic shear on active slip systems at a global strain level of 15% are presented in Fig. 4. Over-
all, the correlation plots depict symmetry about the 1:1 line and the width of contour regions from this
line is higher for the simplified and traditional parametrizations in comparison to the parametrizations
using strengthening or interaction coefficients.
To quantify the degree of agreement, the values for the correlation metrics are reported in the Table 4.
An ubiquitous Cb value of 1.0 indicates that the line of best fit exactly overlaps with 1:1 line. In this
scenario, ρc is solely determined by ρ. As the spread of data points about the 1:1 line increases, the cor-
relation coefficient decreases; maximum correlation is found for the interaction coefficients. The trend
observed by ρ and ρc, respectively is also predicted by MEC.
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Figure 4: Density plot showing the correlation between the shear on active slip systems (γ) obtained with the different
parametrizations of the phenomenological model and the dislocation density-based model at an applied strain of 15% in
loading direction.

Table 4: Concordance correlation coefficient ρc and its decomposed products: Pearson’s correlation coefficient ρ and bias
correction factor Cb; and modeling efficiency coefficient MEC measuring the degree of agreement between the reference
results and the different parametrizations for plastic shear γ. The values given in normal font are the average of all four
combinations of microstructure/texture and load which are complemented by their minimum in subscript and their maxi-
mum in superscript.

ε ≈ 0.08 ε ≈ 0.15
ρ Cb ρc MEC ρ Cb ρc MEC

simplified 0.84 0.86
0.81 1.00 1.00

1.00 0.84 0.86
0.81 0.68 0.71

0.62 0.81 0.83
0.77 1.00 1.00

1.00 0.81 0.83
0.77 0.61 0.67

0.54

traditional 0.84 0.86
0.80 1.00 1.00

1.00 0.84 0.86
0.80 0.68 0.72

0.62 0.80 0.84
0.76 1.00 1.00

1.00 0.80 0.84
0.76 0.62 0.68

0.54

strengthening coeff. 0.95 0.95
0.94 1.00 1.00

1.00 0.94 0.95
0.94 0.90 0.91

0.88 0.93 0.93
0.91 1.00 1.00

1.00 0.92 0.93
0.91 0.86 0.87

0.84

interaction coeff. 0.96 0.97
0.96 1.00 1.00

1.00 0.96 0.97
0.96 0.93 0.93

0.92 0.94 0.95
0.94 1.00 1.00

1.00 0.94 0.95
0.94 0.89 0.90

0.87
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5 CONCLUSION AND OUTLOOK

4 Discussion

The successful reproduction of the average stress–strain curves shown in Fig. 1 by all four parametriza-
tions clearly demonstrates that inferring the interaction parameters from macroscopic stress–strain curves
is not possible. In that context it is important to mention that this holds despite the availability of four
datasets (combination of two microstructures/textures and load cases) and the simple case of an fcc lat-
tice with a single slip family. Hence, physics-informed parameters obtained from either experiments [46,
47] or small scale simulations—typically DDD—are required for an adequate parametrization.
The comparison of Fig. 3 and Table 3 with Fig. 4 and Table 4 shows that the use of interaction coeffi-
cients leads to a significantly higher correlation between the behavior of the phenomenological model
and the reference results obtained from the dislocation density-based formulation. This means in turn
that the values of 1.0/1.4 typically used for the parametrization of phenomenological crystal plasticity
models cannot be recommended. The results also show that the correlation for the deformation behav-
ior (quantified in terms of γ) between physics-based and phenomenological model is much higher for all
parametrizations than the hardening behavior (quantified in terms of ∆τcrit). Related to that, it is also
observed that the improvement in correlation is much higher for the hardening behavior than for the de-
formation behavior. The reason for that can be explained by the fact that in monotonous loading only
a subset of slip systems is active, c.f. Table 2. In the limiting case of having only one active slip system,
all parametrizations are equivalent due to h0 = 1.0, see Table 1. The same holds for hcopla, where only
the simplified parametrization uses a value of 1.4 instead of 1.0. Hence, despite a poor agreement for
hardening—which concerns also inactive slip systems—the predicted deformation behavior is in rather
good agreement. The situation would be very different for load path changes, e.g. when simulating cy-
cling loading, and texture evolution due to large deformations [48] as that would typically lead to the
activation of previously inactive systems. In this case a significant difference in the deformation behavior
is expected between the phenomenological model with the three “wrong” parametrizations and disloca-
tion density-based models. It should be noted that the models employed in this study do not include a
back stress term and are therefore not particularly suited for load path changes that may result in slip
reversals. However, it is anticipated that the results from this study are transferable to phenomenologi-
cal formulations designed for load path changes [49].
The use of interaction coefficients has also consequences for the feasible ranges of other parameters of
the models. In particular, it is obvious that hcoli = 5.51 leads to pronounced hardening of slip systems
that are collinear to active systems. That mandates sufficiently high saturation value τ∞crit to avoid com-
ing close to the saturation value at low to moderate strain levels. It should be noted that this issue is
partly caused by the use of constant values for the interaction parameters in Eq. (1), which is a simplifi-
cation that does not take into account interaction strength decreases with increasing dislocation density
[18, 10].

5 Conclusion and Outlook

It is shown that use of interaction coefficients determined by means of DDD simulations improves the
parametrization of phenomenological crystal plasticity models. More specifically, using the values ob-
tained by DDD simulations increases the agreement between reference results obtained with a disloca-
tion density-based crystal plasticity model in comparison to typically used values (“1.0/1.4”) for phe-
nomenological simulations. The investigations have been performed on the example of Nickel, an fcc ma-
terial. Nevertheless, it is anticipated that the findings can be transferred to materials with other crys-
tal structures. Both, hardening, quantified in terms of the increase of CRSS on all slip systems, and de-
formation behavior, quantified in terms of the plastic shear on active slip systems, have been compared.
The differences are significantly larger for the hardening behavior than for the deformation behavior Hence,
the use of physics-informed hardening parameters is particularly important for simulations involving load
path changes, e.g. in the case of cyclic loading, that lead to the activation of previously inactive (but
hardened) slip systems.
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Since DDD parametrizations exists for most fcc [8, 18, 9, 12, 7] and body-centered cubic [10, 12] metals
and for some hexagonal close packed [50, 11] materials, this findings allow for easy improvements of phe-
nomenological crystal plasticity model parametrizations. It is also hypothezized that the findings pre-
sented here are also applicable to other phenomenological hardening models, e.g. those suitable for load
path changes [49].
To further improve the capabilities of the phenomenological formulation, it might be required to decrease
the magnitude of the interaction parameters with increasing deformation. However, implementing the
approach presented by [18] is not straight forward as it requires to have the dislocation density as an in-
ternal variable. Furthermore, it must be questioned whether further complications to the phenomenolog-
ical model, which is preferentially used because of its simplicity, are desired.
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