Hi! I'm Dr. Martin Diehl from Düsseldorf 1

I am a scientist working in the field of materials simulation.
Currently, I am employed by the Max-Planck-Institut für Eisenforschung

Interests

Computer simulation is a powerful tool to understand and improve materials. Using crystal plasticity simulations enables to investigate real microstructures in real loading conditions. I am trying to achieve a strong coupling between experimental investigations and my simulations.

Crystal Plasticity

Crystal plasticity example Crystal plasticity simulations describe the mechanical behavior of metals under load. Using physical based laws allows to capture the underlying mechanisms for the plastic anisotropy.

Open Source Software

GPL v3 I believe that sharing ideas is essential in science. Therefore, scientific software should be free and open source.

Mechanics

Calculation loop crystal plasticity 4 corners Constitutive formulations are embedded into a continuum mechanics framework. Using continuum mechanics allows to consider for example the interactions of many crystallographic grains.

DAMASK ‒ A Modular Grain Scale Simulation Tool

DAMASK Logo As a member of the Theory and Simulation group, I am contributing to DAMASK. The core of DAMASK is written in Fortran while its control scripts are based on Python.

Spectral Methods

\[ \mathscr F_\text{basic}\left[ \boldsymbol{F}(\boldsymbol{x}) \right] := \mathcal F^{-1} \left[ \cases{ ℾ(\boldsymbol{k}) \boldsymbol{P}(\boldsymbol{k}) \; \mbox{if}\, \boldsymbol{k} \ne \boldsymbol{0} \cr \Delta F_\text{BC} \;\;\;\;\;\;\, \mbox{else}} \right] \]
Spectral methods, pioneered by P. Suquet and R.A. Lebensohn, are especially suited for micromechanics and homogenization.

Software Development

Logo Git and Python Python is a modern scripting language that makes code developing easy. Git is a distributed version control system and a great tool for sharing code and keeping track of your code.

Steels

steel microstructure Steel is a fascinating material with many applications.

Multiphysics Simulations

DFG Priority Program 1713 Chemomechanis Logo In the DFG Priority Program 1713, I am participating in the development of tools to solve coupled thermo-chemo-mechanical problems.

Publications

Please find my publications below. For an exhaustive list, including talks, posters etc., please visit my personal profile provided by the Max-Planck-Institut für Eisenforschung. For the full text of my publications, please visit my ResearchGate profile

M. Diehl, L. Kertsch, K. Traka, D. Helm, and D. Raabe. Site-Specific Quasi In Situ Investigation of Primary Static Recrystallization in a Low Carbon Steel. Materials Science and Engineering A, submitted, 2019.

M. Diehl, J. Niehuesbernd, and E. Bruder. Microstructure models for predicting the elastic and plastic anisotropy of strongly-textured steel. International Journal of Plasticity, submitted, 2019.

F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S. L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H-O Fabritius, S. Nikolov, M. Friak, N. Fujita, N. Grilli, K. G. F. Janssens, N. Jia, P. J. J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe. DAMASK – The Düsseldorf Advanced Material Simulation Kit for Modelling Multi-Physics Crystal Plasticity, Damage, and Thermal Phenomena from the Single Crystal up to the Component Scale. Computational Materials Science, 158:420–478, 2019. (doi:10.1016/j.commatsci.2018.04.030)

R. Darvishi Kamachali, C. Schwarze, M. Lin, M. Diehl, P. Shanthraj, U. Prahl, I. Steinbach, and D. Raabe. Numerical benchmark of phase-field simulations with elastic strains: Precipitation under chemo–mechanical coupling. Computational Materials Science, 155:541–553, 2018. (doi:10.1016/j.commatsci.2018.09.011)

C. Liu, P. Shanthraj, M. Diehl, F. Roters, S. Dong, J. Dong, W. Ding, and D. Raabe. An integrated crystal plasticity-phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials. International Journal of Plasticity, 106:203–227, 2018. (doi:10.1016/j.ijplas.2018.03.009)

P. Shanthraj, M. Diehl, P. Eisenlohr, F. Roters, and D. Raabe. Handbook of Mechanics of Materials, chapter Spectral Solvers for Crystal Plasticity and Multi-Physics Simulations, pages 1–25. Springer Singapore, Singapore, 2018. (doi:10.1007/978-981-10-6855-3_80-2)

D. Wang, M. Diehl, F. Roters, and D. Raabe. On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity. Mechanics of Materials, 125:70–79, 2018. (doi:10.1016/j.mechmat.2018.06.007)

M. Diehl. Review and outlook: mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale. MRS Communications, 7(4):735–746, 2017. (doi:10.1557/mrc.2017.98)

M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, and D. Raabe. Crystal Plasticity Study on Stress and Strain Partitioning in a Measured 3D Dual Phase Steel Microstructure. Physical Mesomechanics, 20(3):311–323, 2017. (doi:10.1134/S1029959917030079)

M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, and F. Roters. A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations. Integrating Materials and Manufacturing Innovation, 6(1):83–91, 2017. (doi:10.1007/s40192-017-0084-5)

M. Diehl, M. Groeber, C. Haase, D. A. Molodov, F. Roters, and D. Raabe. Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach. JOM, 69(5):848–855, 2017. (doi:10.1007/s11837-017-2303-0)

M. Diehl, M. Wicke, P. Shanthraj, F. Roters, A. Brueckner-Foit, and D. Raabe. Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation. JOM, 69(5):872–878, 2017. (doi:10.1007/s11837-017-2308-8)

D. Cereceda, M. Diehl, F. Roters, D. Raabe, J. M. Perlado, and J. Marian. Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. International Journal of Plasticity, 78:242–265, 2016. (doi:10.1016/j.ijplas.2015.09.002)

M. Diehl. High-resolution crystal plasticity simulations. PhD thesis, RWTH Aachen, Aachen, 2016.

M. Diehl, P. Shanthraj, P. Eisenlohr, and F. Roters. Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method. Meccanica, 51(2):429–441, 2016. (doi:10.1007/s11012-015-0281-2)

D. Ma, P. Eisenlohr, E. Epler, C. A. Volkert, P. Shanthraj, M. Diehl, F. Roters, and D. Raabe. Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression. Acta Materialia, 103:796–808, 2016. (doi:10.1016/j.actamat.2015.11.016)

H. Zhang, M. Diehl, F. Roters, and D. Raabe. A virtual laboratory for initial yield surface determination using high resolution crystal plasticity simulations. International Journal of Plasticity, 80:111–138, 2016. (doi:10.1016/j.ijplas.2016.01.002)

D. Cereceda, M. Diehl, F. Roters, P. Shanthraj, D. Raabe, J. M. Perlado, and J. Marian. Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal Tungsten strength. GAMM-Mitteilungen, 38(2):213–227, 2015. (doi:10.1002/gamm.201510012)

D. Ma, P. Eisenlohr, P. Shanthraj, M. Diehl, F. Roters, and D. Raabe. Analytical bounds of in-plane Young’s modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structures. Computational Materials Science, 109:323–329, 2015. (doi:10.1016/j.commatsci.2015.07.041)

P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters. Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. International Journal of Plasticity, 66:31–45, 2015. (doi:10.1016/j.ijplas.2014.02.006)

C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Annual Review of Materials Research, 45:391–431, 2015. (doi:10.1146/annurev-matsci-070214-021103)

C. C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe. Integrated experimental-numerical analysis of stress and strain partitioning in multi-phase alloys. Acta Materialia, 81:386–400, 2014. (doi:10.1016/j.actamat.2014.07.071)

C. C. Tasan, J. P. M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments-crystal plasticity simulations. International Journal of Plasticity, 63:198–210, 2014. (doi:10.1016/j.ijplas.2014.06.004)

F. Wang, S. Sandlöbes, M. Diehl, L. Sharma, F. Roters, and D. Raabe. In situ observation of collective grain-scale mechanics in Mg and Mg–rare earth alloys. Acta Materialia, 80:77–93, 2014. (doi:10.1016/j.actamat.2014.07.048)

P. Eisenlohr, M. Diehl, R. A. Lebensohn, and F. Roters. A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity, 46:37–53, 2013. (doi:10.1016/j.ijplas.2012.09.012)

F. Roters, M. Diehl, P. Eisenlohr, and D. Raabe. Microstructural Design of Advanced Engineering Materials, chapter Crystal plasticity modeling, pages 41–67. Wiley-VCH, 1 edition, 2013. (doi:10.1002/9783527652815.ch03)

F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, and D. Raabe. DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. In O. Cazacu, editor, Procedia IUTAM: IUTAM Symposium on Linking Scales in Computation: From Microstructure to Macroscale Properties, volume 3, pages 3–10, Amsterdam, 2012. Elsevier. (doi:10.1016/j.piutam.2012.03.001)

Peer Review

Despite criticisms, peer review is still a widely used method for research validation. To give fellow scientists a critical and open feedback to their research, I am serving as a referee for the following journals:

Awards

About Me

Martin with doctoral hat and committee

I was born in Siegen, Germany. After visiting the Rudolf-Steiner-Schule in Siegen and spending some time in Ghana and in east Africa, I started my academic education at the TU München. I continued with a PhD at the RWTH Aachen and now I am working under the supervision of Dierk Raabe.

Contact

Impressum gemäß § 5 TMG

Martin Diehl
Max-Planck-Institut für Eisenforschung GmbH
Max-Planck-Str. 1
40237 Düsseldorf, Germany

m.diehl(at)mpie.de
+49 211 6792 187