Hi! I'm Dr. Martin Diehl from Helgersdorf1

I am assistant professor at KU Leuven working in the field of computational materials science and engineering.


Computer simulation is a powerful tool to understand and improve materials. Using crystal plasticity simulations enables to investigate real microstructures in real loading conditions. I am trying to achieve a strong coupling between experimental investigations and my simulations.

Crystal Plasticity

Crystal plasticity example Crystal plasticity simulations describe the mechanical behavior of metals under load. Using physical based laws allows to capture the underlying mechanisms for the plastic anisotropy.

Open Source Software

GPL v3 I believe that sharing ideas is essential in science. Therefore, scientific software should be free and open source.


Calculation loop crystal plasticity 4 corners Constitutive formulations are embedded into a continuum mechanics framework. Using continuum mechanics allows to consider for example the interactions of many crystallographic grains.

Spectral Methods

\[ \mathscr F_\text{basic}\left[ \boldsymbol{F}(\boldsymbol{x}) \right] := \mathcal F^{-1} \left[ \cases{ ℾ(\boldsymbol{k}) \boldsymbol{P}(\boldsymbol{k}) \; \mbox{if}\, \boldsymbol{k} \ne \boldsymbol{0} \cr \Delta F_\text{BC} \;\;\;\;\;\;\, \mbox{else}} \right] \]
Spectral methods, pioneered by P. Suquet and R.A. Lebensohn, are especially suited for micromechanics and homogenization.

Software Development

Logo Git and Python Python is a modern scripting language that makes code developing easy. Git is a distributed version control system and a great tool for sharing code and keeping track of your code.


steel microstructure Steel is a fascinating material with many applications.

Multiphysics Simulations

DFG Priority Program 1713 Chemomechanis Logo In the DFG Priority Program 1713, I am participating in the development of tools to solve coupled thermo-chemo-mechanical problems.


The list of my peer reviewed publications and contributions to books is given below. For an exhaustive collection, including talks, posters etc., please visit my personal profile provided by the Max-Planck-Institut für Eisenforschung. Full texts are available on my ResearchGate profile.

M. Diehl. Crystal Plasticity. In V. Silberschmidt, editor: Comprehensive Mechanics of Materials: Experimental and Computational Mechanics of Materials, pages 235-266. Elsevier, Oxford, 2024. (doi:10.1016/B978-0-323-90646-3.00023-X)

T. Chatziathanasiou, O. Demir, J. Soete, C. Breite, M. Mehdikhani, M. Diehl, and Y. Swolfs. Material representativeness of a polymer matrix doped with nanoparticles as the random speckle pattern for digital volume correlation of fibre-reinforced composites. Composites Part B: Engineering 276:111381, 2024. (doi:10.1016/j.compositesb.2024.111381)

N. Kusampudi and M. Diehl. Inverse design of dual-phase steel microstructures using generative machine learning model and Bayesian optimization. International Journal of Plasticity 171:103776, 2023. (doi:10.1016/j.ijplas.2023.103776)

F.-J. Gallardo-Basile, F. Roters, R. M. Jentner, J. P. Best, C. Kirchlechner, K. Srivastava, S. Scholl, and M. Diehl. Application of a nanoindentation-based approach for parameter identification to a crystal plasticity model for bcc metals. Materials Science and Engineering A 881:145373, 2023. (doi:10.1016/j.msea.2023.145373)

P. Seibert, A. Raßloff, K. A. Kalina, J. Gussone, K. Bugelnig, M. Diehl, and M. Kästner. Two-stage 2D-to-3D reconstruction of realistic microstructures: Implementation and numerical validation by effective properties. Computer Methods in Applied Mechanics and Engineering 412:116098, 2023. (doi:10.1016/j.cma.2023.116098)

F.-J. Gallardo-Basile, F. Roters, R. M. Jentner, K. Srivastava, S. Scholl, and M. Diehl. Modeling Bainite Dual-Phase Steels: A High-Resolution Crystal Plasticity Simulation Study. Crystals 13(4):673, 2023. (doi:10.3390/cryst13040673)

A. W. Paiva do Nascimento, S. Roongta, M. Diehl, and I. J. Beyerlein. A machine learning model to predict yield surfaces from crystal plasticity simulations. International Journal of Plasticity 161:103507, 2023. (doi:10.1016/j.ijplas.2022.103507)

N. Perchikov and M. Diehl. A single-domain spectral solver for spatially nonsmooth differential equations of quasistatic solid mechanics in polar coordinates. Acta Mechanica 234:599-647, 2023. (doi:10.1007/s00707-022-03406-0)

K. Sedighiani, K. Traka, F. Roters, J. Sietsma, D. Raabe, and M. Diehl. Crystal plasticity simulation of in-grain microstructural evolution during large deformation of IF-steel. Acta Materialia 237:118167, 2022. (doi:10.1016/j.actamat.2022.118167)

V. Shah, K. Sedighiani, J. S. Van Dokkum, C. Bos, F. Roters, and M. Diehl. Coupling crystal plasticity and cellular automaton models to study meta-dynamic recrystallization during hot rolling at high strain rates. Materials Science and Engineering A 849:143471, 2022. (doi:10.1016/j.msea.2022.143471)

J. R. Mianroodi, P. Shanthraj, C. Liu, S. Vakili, S. Roongta, N. H. Siboni, N. Perchikov, Y. Bai, B. Svendsen, F. Roters, D. Raabe, and M. Diehl. Modeling and simulation of microstructure in metallic systems based on multi-physics approaches. npj Computational Materials 8:93, 2022. (doi:10.1038/s41524-022-00764-0)

N. Fujita, K. Yasuda, N. Ishikawa, M. Diehl, F. Roters, and D. Raabe. Characterizing Localized Microstructural Deformation of Multiphase Steel by Crystal Plasticity Simulation with Multi-Constitutive Law (in Japanese). Journal of the Japan Society for Technology of Plasticity 63(732):1-8, 2022. (doi:10.9773/sosei.63.1)

S. Zhang, L. Wang, G. Zhu, M. Diehl, A. Maldar, X. Shang, and X. Zeng. Predicting grain boundary damage by machine learning. International Journal of Plasticity 150:103186, 2022. (doi:10.1016/j.ijplas.2021.103186)

K. Sedighiani, K. Traka, F. Roters, D. Raabe, J. Sietsma, and M. Diehl. Determination and analysis of the constitutive parameters of temperature-dependent dislocation-density-based crystal plasticity models. Mechanics of Materials 164:104117, 2022. (doi:10.1016/j.mechmat.2021.104117)

K. Sedighiani, V. Shah, K. Traka, M. Diehl, F. Roters, J. Sietsma, and D. Raabe. Large-deformation crystal plasticity simulation of microstructure and microtexture evolution through adaptive remeshing. International Journal of Plasticity 146:103078, 2021. (doi:10.1016/j.ijplas.2021.103078)

F.-J. Gallardo-Basile, Y. Naunheim, F. Roters, and M. Diehl. Lath martensite microstructure modeling: A high-resolution crystal plasticity simulation study. Materials 14(3):691, 2021. (doi:10.3390/ma14030691)

K. Sedighiani, M. Diehl, K. Traka, F. Roters, J. Sietsma, and D. Raabe. An Efficient and Robust Approach to Determine Material Parameters of Crystal Plasticity Constitutive Laws from Macro-Scale Stress–Strain Curves. International Journal of Plasticity 134:102779, 2020. (doi:10.1016/j.ijplas.2020.102779)

M. Diehl and M. Kühbach. Coupled Experimental-Computational Analysis of Primary Static Recrystallization in Low Carbon Steel. Modelling and Simulation in Materials Science and Engineering 28:014001, 2020. (doi:10.1088/1361-651X/ab51bd)

M. Diehl, D. Wang, C. Liu, J. R. Mianroodi, F. Han, D. Ma, P. J. J. Kok, F. Roters, and P. Shanthraj. Solving material mechanics and multiphysics problems of metals with complex microstructures using DAMASK – The Düsseldorf Advanced Material Simulation Kit. Advanced Engineering Materials 22(3):1901044, 2020. (doi:10.1002/adem.201901044)

F. Han, M. Diehl, F. Roters, and D. Raabe. Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations. Journal of Materials Processing Technology 277:116449, 2020. (doi:10.1016/j.jmatprotec.2019.116449)

D. Raabe, B. Sun, A. Kwiatkowski Da Silva, B. Gault, H.-W. Yen, K. Sedighiani, T. S. Prithiv, I. R. Souza Filho, S. Katnagallu, E. Jägle, P. Kürnsteiner, N. Kusampudi, L. Stephenson, M. Herbig, C. H. Liebscher, H. Springer, S. Zaefferer, V. Shah, S. L. Wong, C. Baron, M. Diehl, F. Roters, and D. Ponge. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. Metallurgical and Materials Transactions A 51:5517-5586 2020. (doi:10.1007/s11661-020-05947-2)

F. Roters, M. Diehl, and K. Sedighiani. (Re-) Formulation of dislocation density based crystal plasticity models in view of insights from parameter determination. In R. Kienzler, D. L. McDowell, S. Müller, and E. Werner, editors, Oberwolfach Reports volume 17, Zürich, 2020. European Mathematical Society Publishing House. (doi:10.14760/OWR-2020-13)

M. Diehl, L. Kertsch, K. Traka, D. Helm, and D. Raabe. Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel. Materials Science and Engineering A 755:295–306, 2019. (doi:10.1016/j.msea.2019.02.032)

M. Diehl, J. Niehuesbernd, and E. Bruder. Quantifying the Contribution of Crystallographic Texture and Grain Morphology on the Elastic and Plastic Anisotropy of bcc Steel. Metals 9(12):1252, 2019. (doi:10.3390/met9121252)

N. Fujita, S. Igi, M. Diehl, F. Roters, and D. Raabe. The through-process texture analysis of plate rolling by coupling finite element and fast Fourier transform crystal plasticity analysis. Modelling and Simulation in Materials Science and Engineering 27:085005, 2019. (doi:10.1088/1361-651X/ab4143)

C. Liu, P. Shanthraj, J. D. Robson, M. Diehl, S. Dong, J. Dong, W. Ding, and D. Raabe. On the interaction of precipitates and tensile twins in magnesium alloys. Acta Materialia 178:146–162, 2019. (doi:10.1016/j.actamat.2019.07.046)

F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S. L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friak, N. Fujita, N. Grilli, K. G. F. Janssens, N. Jia, P. J. J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe. DAMASK – The Düsseldorf Advanced Material Simulation Kit for Modelling Multi-Physics Crystal Plasticity, Damage, and Thermal Phenomena from the Single Crystal up to the Component Scale. Computational Materials Science 158:420–478, 2019. (doi:10.1016/j.commatsci.2018.04.030)

P. Shanthraj, M. Diehl, P. Eisenlohr, F. Roters, and D. Raabe. Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In C.-H. Hsueh, S. Schmauder, C.-S. Chen, K. K. Chawla, N. Chawla, W. Chen, and Y. Kagawa, editors: Handbook of Mechanics of Materials, pages 1347–1372. Springer, Singapore, 2019. (doi:10.1007/978-981-10-6884-3_80)

R. Darvishi Kamachali, C. Schwarze, M. Lin, M. Diehl, P. Shanthraj, U. Prahl, I. Steinbach, and D. Raabe. Numerical benchmark of phase-field simulations with elastic strains: Precipitation under chemo–mechanical coupling. Computational Materials Science 155:541–553, 2018. (doi:10.1016/j.commatsci.2018.09.011)

C. Liu, P. Shanthraj, M. Diehl, F. Roters, S. Dong, J. Dong, W. Ding, and D. Raabe. An integrated crystal plasticity-phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials. International Journal of Plasticity 106:203–227, 2018. (doi:10.1016/j.ijplas.2018.03.009)

D. Wang, M. Diehl, F. Roters, and D. Raabe. On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity. Mechanics of Materials 125:70–79, 2018. (doi:10.1016/j.mechmat.2018.06.007)

M. Diehl. Review and outlook: mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale. MRS Communications 7(4):735–746, 2017. (doi:10.1557/mrc.2017.98)

M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, and D. Raabe. Crystal Plasticity Study on Stress and Strain Partitioning in a Measured 3D Dual Phase Steel Microstructure. Physical Mesomechanics 20(3):311–323, 2017. (doi:10.1134/S1029959917030079)

M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, and F. Roters. A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations. Integrating Materials and Manufacturing Innovation 6(1):83–91, 2017. (doi:10.1007/s40192-017-0084-5)

M. Diehl, M. Groeber, C. Haase, D. A. Molodov, F. Roters, and D. Raabe. Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach. JOM 69(5):848–855, 2017. (doi:10.1007/s11837-017-2303-0)

M. Diehl, M. Wicke, P. Shanthraj, F. Roters, A. Brueckner-Foit, and D. Raabe. Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation. JOM 69(5):872–878, 2017. (doi:10.1007/s11837-017-2308-8)

D. Ponge, M. Diehl, F. Archie, S. Zaefferer, F. Roters, and D. Raabe. Development of damage-resistant dual-phase steels. Chernye Metally (9):40–41, 2017.

D. Cereceda, M. Diehl, F. Roters, D. Raabe, J. M. Perlado, and J. Marian. Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. International Journal of Plasticity 78:242–265, 2016. (doi:10.1016/j.ijplas.2015.09.002)

M. Diehl. High-resolution crystal plasticity simulations. PhD thesis, RWTH Aachen, Aachen, 2016.

M. Diehl, P. Shanthraj, P. Eisenlohr, and F. Roters. Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method. Meccanica 51(2):429–441, 2016. (doi:10.1007/s11012-015-0281-2)

D. Ma, P. Eisenlohr, E. Epler, C. A. Volkert, P. Shanthraj, M. Diehl, F. Roters, and D. Raabe. Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression. Acta Materialia 103:796–808, 2016. (doi:10.1016/j.actamat.2015.11.016)

H. Zhang, M. Diehl, F. Roters, and D. Raabe. A virtual laboratory for initial yield surface determination using high resolution crystal plasticity simulations. International Journal of Plasticity 80:111–138, 2016. (doi:10.1016/j.ijplas.2016.01.002)

D. Cereceda, M. Diehl, F. Roters, P. Shanthraj, D. Raabe, J. M. Perlado, and J. Marian. Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal Tungsten strength. GAMM-Mitteilungen 38(2):213–227, 2015. (doi:10.1002/gamm.201510012)

D. Ma, P. Eisenlohr, P. Shanthraj, M. Diehl, F. Roters, and D. Raabe. Analytical bounds of in-plane Young’s modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structures. Computational Materials Science 109:323–329, 2015. (doi:10.1016/j.commatsci.2015.07.041)

P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters. Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. International Journal of Plasticity 66:31–45, 2015. (doi:10.1016/j.ijplas.2014.02.006)

C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Annual Review of Materials Research 45:391–431, 2015. (doi:10.1146/annurev-matsci-070214-021103)

C. C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe. Integrated experimental-numerical analysis of stress and strain partitioning in multi-phase alloys. Acta Materialia 81:386–400, 2014. (doi:10.1016/j.actamat.2014.07.071)

C. C. Tasan, J. P. M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments-crystal plasticity simulations. International Journal of Plasticity 63:198–210, 2014. (doi:10.1016/j.ijplas.2014.06.004)

F. Wang, S. Sandlöbes, M. Diehl, L. Sharma, F. Roters, and D. Raabe. In situ observation of collective grain-scale mechanics in Mg and Mg–rare earth alloys. Acta Materialia 80:77–93, 2014. (doi:10.1016/j.actamat.2014.07.048)

P. Eisenlohr, M. Diehl, R. A. Lebensohn, and F. Roters. A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity 46:37–53, 2013. (doi:10.1016/j.ijplas.2012.09.012)

F. Roters, M. Diehl, P. Eisenlohr, and D. Raabe. Crystal plasticity modeling. In D. A. Molodov, editor: Microstructural Design of Advanced Engineering Materials, pages 41–67. Wiley-VCH, Weinheim, 2013. (doi:10.1002/9783527652815.ch03)

F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, and D. Raabe. DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. In O. Cazacu, editor: Procedia IUTAM: IUTAM Symposium on Linking Scales in Computation: From Microstructure to Macroscale Properties volume 3, pages 3–10, Elsevier, Amsterdam, 2012. (doi:10.1016/j.piutam.2012.03.001)

M. Diehl. A spectral method using fast fourier transform to solve elastoviscoplastic mechanical boundary value problems. Diploma thesis, TU München, 2010. (doi:10.13140/2.1.3234.3840)

Peer Review

Despite criticism, peer review is still a widely used method for research validation. To give fellow scientists a critical and open feedback to their research, I am serving as a referee for the following journals:


About Me

Martin with doctoral hat and committee

I was born in Siegen, Germany. After visiting the Rudolf-Steiner-Schule in Siegen and spending some time in Ghana (2004) and east Africa (2005), I started my academic education at the TU München. I continued with a PhD at the RWTH Aachen while working in the department for Microstructure Physics and Alloy Design of the Max-Planck-Institut für Eisenforschung (MPIE) headed by Dierk Raabe from 2011 to 2015.

During my postdoc and group leader time at MPIE (2015-2020), I stayed as a visiting researcher at the National Institute for Materials Science in Japan and the University of California, Los Angeles in the USA. Since 2020, I am working at the KU Leuven with affiliatons to the Department of Materials Engineering and the Department of Computer Science.

I was featured in the GAMM Rundbrief 2020-2 on page 23-24, in GeniaaL 53 on page 9, and in SETtling in 2020/2021 on page 18-19.


Impressum gemäß § 5 TMG

Martin Diehl
Computational Materials Science
Department of Computer Science
Celestijnenlaan 200A, Box 2402
3001 Leuven, Belgium

+32 16 19 46 53